
Universal CPU Command Structure

Supports ST-4X, ST-5, and ST-6 Cameras

December 15, 1993

Includes ST-4X Version 1.0 Firmware
Includes ST-5 Version 1.0 Firmware
Includes ST-6 Version 3.0 Firmware

Santa Barbara Instrument Group
1482 East Valley Road • Suite 31

PO Box 50437
Santa Barbara, California 93150

Table of Contents

1. What's New...1
2. Introduction..1
3. Packet Structure..2
4. Serial Data Format..3
5. Working with Different Camera Configurations...3
6. Commands..4

Exposure Related Commands...5
take_image - Command 01H..5
end_exposure - Command 02H...7
shutter_control - Command 04H..8
set_head_offset - Command 0FH..8
read_blank_video - Command 12H ...9
flush_ccd - Command 27H...9

Image Processing Commands..9
clr_buf - Command 06H ..10
get_line - Command 07H...10
get_uncompressed_line - Command 1FH...11
put_line - Command 22H ..12
put_uncompressed_line - Command 23H..13
get_readout_peak - Command 03H...13
cal_width - Command 1EH..14
cal_cent - Command 08H ..15
reduce_image - Command 09H...16
shrink_image - Command 24H...16
accum_image - Command 0AH...16
sub_offset - Command 0BH...17
get_minmax - Command 0CH..17
sub_dark - Command 1CH...18

Relay Commands...18
activate_relay - Command 0DH..18

Temperature Regulation Commands ...18
regulate_temp - Command 0EH ...19
output_temp - Command 10H..20
read_thermistor - Command 1DH ..20
get_temp_status - Command 20H...21

Aux Port Commands..21
tx_to_aux - Command 11H..22
set_aux_control - Command 13H...22
get_aux_status - Command 14H ..23
pulse_out - Command 26H..23

General Purpose Commands...23
get_cpu_info - Command 25H..24
get_activity_status - Command 05H...25
get_result_buf - Command 15H..25
call_remote - Command 16H..25
write_block - Command 17H..26
read_block - Command 18H...26

get_rom_version - Command 19H...27
set_com_baud - Command 1AH..27
reset - Command 1BH...27

Test Commands...27
loopback_aux_test - Command 21H ...27

7. Data Compression Algorithm ...28
8. The Image Buffers..28
9. Sample Instruction Sequences..29

Establishing a Communications Link...29
Determining the Head Offset (ST-6 Cameras Only) ..30
Taking an Exposure...30
Downloading an Image...31
Sending Data to an Instrument on the AUX Port...31

Universal CPU Command Structure

1. What's New
Since the last release of this document (dated February 15, 1993) this specification has
been expanded to support 2 new cameras: the ST-4X and the ST-5. These cameras use the
same CPU as the ST-6 (now referred to as the Universal CPU), and thus have a very similar
interface. The major differences between the three cameras are highlighted in the table
below:

Camera Pixels Dark Vane Frame Transfer Temperature Regulation
ST-4X 192 x 164 No No Open Loop
ST-5 320 x 240 No Yes Closed Loop Regulation
ST-6 375 x 242 Yes Yes Closed Loop Regulation

For users who are familiar with previous versions of this document, you should read the
section "Working with Different Camera Configurations" and then browse the individual
commands. While several new commands have been added, all previously existing
commands are unchanged so that all current ST-6 software can be used without
modification. The new commands are:

get_cpu_info - Returns information about the model of camera the CPU supports.
put_line, put_uncompressed_line - Allows the Host to upload image data into the

CPU's image buffers.
shrink_image - Like the reduce_image command except the image is reduced by

averaging a 2 x 2 block of pixels.
pulse_out - Sends pulses out the AUX port for control of motors, etc.
flush_ccd - Flushes the CCD by doint vertical transfers.

2. Introduction
This document describes the software interface to the ST-4X, ST-5, and ST-6 CCD cameras.
These cameras consists of two components: the Optical Head and the CPU. The CPU
interfaces to the Host computer through three-wire RS232 or, for long cable runs, through
differential RS422. The CPU is microcontroller based with internal firmware that controls
the operation of the Optical Head and provides frame storage capability for captured
images1. The CPU communicates to and is controlled by the Host computer through a
packet oriented protocol that involves the Host acting as a Master and the CPU acting as a
slave. The CPU only sends data to the Host at the request of the Host. In general the flow
of data from the Host computer to the CPU is as shown below:

1. The Host builds a command packet to be sent to the CPU.
2. The Host sends the packet to CPU.
3. The CPU responds to the command from host in one of the following ways:

a) The CPU returns an ACK message to the Host to acknowledge receipt
of a command that has no formal response.

b) The CPU builds and returns a packet to the Host containing data
relevant to the command issued by the Host.

1 The CPU has three image buffers referred to as the Dark Buffer, the Light Buffer and the Accumulation
Buffer. The Dark and Light buffers are 16 bit buffers and the Accumulation buffer is 32 bits. Commands
affecting the image buffers allow you to select the destination buffer.

Page 1

Universal CPU Command Structure

c) Upon parsing the packet the CPU detects a checksum error in the
packet and returns a NACK message to the Host to indicate
retransmission of the command is needed.

d) Upon parsing the packet the CPU detects an unknown command, a
command with an incorrect length, or a parameter out of range within
the command and returns a CAN message to the Host indicating an
error in the Host's programming.

4. Depending on the CPU's response, the Host may need to resend the
command packet to the CPU, for example when a NACK or no response at
all is returned from the CPU.

Since the communications between the Host and the Camera are not assumed to be
operating in a error-free environment some mechanism for error recovery is provided (as
demonstrated by the NACK response for example). Inherent in the design of the packet
protocol is the ability to determine proper transmission and receipt of data. To facilitate
operations in a non-perfect communications environment the packet protocol implemented
in the CPU adheres to the following rules:

• The CPU only transmits data to the Host in response to commands received
from the Host, and then only sends the data once.

• Each command sent to the CPU will elicit some kind of response from the
CPU.

• The CPU will respond within a fixed period of time after having received the
command from the host. From the Host's point of view if the ST-6 has not
responded within 0.1 seconds from transmission of the final byte in the
packet then it can be assumed that the CPU did not receive the command
and it should be retransmitted.

• The CPU expects that all the data received within a packet will arrive in a
burst. If the CPU is in the middle of receiving a packet and there is a dead
time of 2.56 seconds (between consecutive bytes) the CPU will resynchronize
its packet parsing, looking for the start of a new packet.

• When the CPU is transmitting data to the host in response to a command
sent from the host it will build the packet and transmit it in a burst,
without any appreciable delay between bytes.

3. Packet Structure
The commands sent from the Host computer to the CPU are structured into packets. The
packets contain additional information to aid in the receipt and detection of transmission
errors. The packet structure is shown below:

A5H = Start Byte
XXH = Command Byte
XXH = Data Length N (Low Byte)
XXH = Data Length N (High Byte)
XXH = Data Byte 1
XXH = Data Byte 2
 .
 .
 .

Page 2

Universal CPU Command Structure

XXH = Data Byte N
XXH = Checksum (Low Byte)
XXH = Checksum (High Byte)

Several items about the packet structure are worth noting:

• All packets start with the Start Byte A5 hexadecimal.
• There are 256 possible commands due to the one-byte command.
• The length bytes contained in the packet tell the data length. The packet

length including the start byte, command byte, length bytes and checksum
bytes is equal to the Data Length plus 6.

• The Checksum is the 16 bit unsigned sum of all the bytes in the packet
except the checksum bytes themselves. The checksum is modulo 65536,
meaning if the sum overflows 16 bits it just wraps around.

• The CPU has buffers to be able to receive and send packets up to 1024 bytes
in length. The longest packet the Host software will receive from the CPU is
756 bytes long (the response to the get_line command) so 1024 byte buffers
on the Host should be adequate.

In addition to the A5 hexadecimal Start of Packet byte, the following byte constants are
defined:

A5H = Start of Packet
06H = ACK (Packet received ok)
15H = NAK (Bad checksum)
18H = CAN (Bad command, length, parameter)

4. Serial Data Format
At power-up the CPU expects communications with the Host computer over its COM port
at 9600 baud. The baud rate can be reprogrammed for other data rates (using the
set_com_baud command discussed later). The data format is 8 data bits, no parity bits,
and 1 stop bit (a total of 10 bits per byte including the start bit).

5. Working with Different Camera Configurations
Since the Universal CPU can be connected to several model cameras with different firmware
and features the Host Computer should first establish a communications link with the
CPU and then identify the type of instrument at the other end of the link.

Establishing a communications link with the CPU is most easily achieved by sending
the CPU the get_rom_version command. Try 9600 baud if you had not previously
communicated with the CPU, or try the last baud rate you had previously used if you had
established a link. If that fails (the CPU does not give a valid response) you should scan
the baud rates supported by your software trying to establish a link. Since the CPU powers
up at 9600 baud and will only change baud rates when the Host instructs it to, scanning
only the rates supported by your software should suffice.

Once the link has been established, you should issue the CPU a get_cpu_info
command to identify the camera model and capabilities. If the model is not supported by
your software you should not continue to send commands to the CPU and you may want to
inform the user. Using the data returned by the get_cpu_info command you should
determine the features the CPU will support and use that information to tailor other
commands you supply to the CPU. The information returned from the get_cpu_info

Page 3

Universal CPU Command Structure

command includes the following: CPU Type (ST-4X, ST-5 or ST-6), Supported Capabilities
(Temperature Regulation, etc.), Image Buffer Dimensions (Height, Width), Readout Modes
(Number of Pixels and Pixel Dimensions).

6. Commands
This section describes the individual commands that the Host computer can send to the
CPU. Each command has a name and a command byte (the command byte is the 2nd byte
in the packet sent to the CPU). Individual commands can have zero or more data bytes
(depending on the command itself). If the command has no data then the Data Length
bytes in the packet are both zero. Data within commands is described in terms of the
following parameter types:

byte Unsigned 8 bit integer.
boolean Two bytes in length, least significant byte first. A value of 1

designates TRUE and a value of 0 designates FALSE.
buffer Enumerated unsigned integer, two bytes in length, least significant

byte first. A value of 0, 1, or 2 designates the Dark, Light, and
Accumulation image buffers respectively.

enum Enumerated unsigned integer value with a set of allowed values.
Two bytes in length, least significant byte first.

int Unsigned integer, two bytes in length, least significant byte first.
signed int Same as int only signed.

long Unsigned long integer, 4 bytes in length, least significant byte first
followed by the next 3 bytes in order of increasing significance.

signed long Same as long only signed.

Some commands sent from the Host to the CPU elicit only an ACK response from the CPU
(an ACK is the single byte 06 hexadecimal) where as other commands involve the CPU
building and sending a packet of data back to the Host computer. In this case, the
response looks like the packet sent to the CPU, starting with an A5 Start Byte and the
same Command Byte, but with a Data Length and Data format specific to the command,
all followed by the two byte Checksum.

An additional case to consider is commands with a "delayed response". Several PU
commands can take a variable amount of time to complete. Rather than the CPU waiting
for the command to finish before sending the ACK message, the CPU sends the command to
a foreground processor and sends the ACK back right away. The Host can then monitor the
progress of the command by using the get_activity_status command. If a command with a
"delayed response" actually needs to return some data to the host (such as the cal_cent
command) the command returns the ACK right away and then puts the computed result
into a global result buffer which can be downloaded when the command has finished
processing using the get_result_buf command.

Each of the CPU's commands are described in the sections below. The commands
have been broken down into logical groups.

Page 4

Universal CPU Command Structure

Exposure Related Commands
The commands described in this section are used to start or stop exposures, control the
shutter, adjust the head offset or read the heads video output level.

take_image - Command 01H
Purpose: Control shutter, Clear CCD, Time exposure and Readout CCD.
Parameters:

exposure_time (long)-integration time in hundredths of a second
line_start (int)-top line to readout (value depends on readout mode, 0 thru max

height - 1)
line_len (int)-number of lines to readout (value depends on readout mode, 1 thru max

height)
pixel_start (int)-leftmost pixel to readout (value depends on readout mode, 0 thru

max width - 1)
pixel_len (int)-number of pixels to readout (value depends on readout mode, 1 thru

max width)
enable_dcs (boolean)-on ST-6 do double correlated readout if TRUE, on other cameras

parameter doesn't affect readout and should be set FALSE
dc_restore (boolean)-on ST-6 do DC restore on readout if TRUE. On an ST-4X reduce

the CCD amplifier bias during integration to reduce the readout glow if TRUE. On
the ST-5 this parameter doesn't affect readout and should be set FALSE

abg_state (enum)-antiblooming gate state
0 = Low during integration (ABG shut off)
1 = Clocked during integration (normal setting, ABG protection active)
2 = Mid during integration (test setting)

abg_period (int)-antiblooming period in 4.3 microsecond steps when ABG clocked,
minimum value of 30 counts (129 µs). The recommended values are shown in the
table below based on the amount of antiblooming protection required:

Desired ABG Protection abg_period
Highest amount of ABG protection

(extremely bright object in field of view)
600

Medium amount of ABG protection
(normal viewing)

6000

Minimal ABG protection
(when lowest noise readout is required
with effectively no ABG protection)

65535

dest_buffer (buffer)-destination buffer for readout
auto_dark (boolean)-subtract dark buffer before saving to destination buffer when

TRUE
readout_mode (enum)-specifies the readout format of the CCD to be used in digitizing

the image. Possible values for this parameter are returned by the get_cpu_info
command as different model cameras support different readout modes. The
readout modes supported by the various cameras are:

ST-4X - the two modes supported are HIGH (readout_mode set to 0) for a
resolution of 192 x 164 pixels with an A/D gain of 7.2 e-/count and LOW (readout
mode set to 1) for a resolution of 96 x 82 pixels with an A/D gain of 14.4e-/count.

Page 5

Universal CPU Command Structure

ST-5 - the two modes supported are HIGH (readout_mode set to 0) for a
resolution of 320 x 240 pixels with an A/D gain of 3.0 e-/count and LOW (readout
mode set to 1) for a resolution of 160 x 120 pixels with an A/D gain of 6.0
e-/count.

ST-6 - combines 2 pixels horizontally when readout_mode is 1 (375 x 242 pixels),
or combines 2 pixels vertically when readout_mode is 0 (750 x 121 pixels) and has
been supplemented by the modes discussed below:

Version 2.0 ROM Change -
The following binning modes are supported by the Version 2.0 and later ROMs:
readout_mode value
mode name

0
-

1
HIGH

2
MEDIUM

3
LOW

4
HI_HRES

Vertical Binning 2* 1 1 2 2
Horizontal Binning 1 2* 3 3 1
Max Image Columns 750 375 250 250 750
Max Image Rows 121 242 242 121 121

and the following additional modes are supported by the Version 2.01 and 3.01 ROMs
readout_mode value
mode name

5
SPECT_HI

6
SPECT_MED

7
SPECT_LOW

8
SPECT_X_MED

Vertical Binning 8 8 8 242
Horizontal Binning 1 2* 3 2*
Max Image Columns 750 375 250 375
Max Image Rows 30 30 30 1

where * represents off-chip binning where 1 A/D count = 6.7 e-, otherwise on-chip
binning is used where 1 A/D count = 3.35 e-

Version 3.01 ROM Change -
The following additional mode is supported by the Version 3.01 ROMs
readout_mode value
mode name

9
SPECT_X_HI

Vertical Binning 242
Horizontal Binning 1
Max Image Columns 750
Max Image Rows 1

on-chip binning is used where 1 A/D count = 3.35 e-

open_shutter (boolean)-for an ST-6 open shutter for exposure when TRUE, for other
cameras parameter does not affect readout

ST-6 Version 2.0 or Higher ROM Change -
0 = Shutter closed for integration and readout.
1 = Shutter open for integration, closed for readout.
2 = Shutter open for integration and readout.

Response: ACK

Page 6

Universal CPU Command Structure

Status Values:
0=Idle, 1=Sent to foreground, 2=Waiting for shutter, 3=Flushing CCD,
4=Timing exposure, 5=Waiting for end_exposure, 6=Transferring CCD,
7=Waiting for readout, 8=Reading CCD, 9=Post processing,
100-341=Digitizing line n where n=status-100

Notes:
• If exposure_time=0 then take_image command clears the CCD and then waits for

an end_exposure command to terminate the integration and start the readout.
• On sub-frame readout the image data is positioned at the correct position in

destination buffer, not at 0,0.
• When the take_image command is digitizing the image try to keep the

communications with the CPU to a minimum, interrogating it only 3 to 4 times
per second.

• Use the get_cpu_info command to determine the maximum allowable image
dimensions for each readout mode.

• When the auto_dark parameter is set TRUE, a bias of 100 counts is added to the
resulting difference to stop clipping pixels below zero.

• If a flush_ccd command is in progress when the take_image command is issued
the take_image command is ignored.

ST-6 Cameras Only
• The take_image command treats the image buffers as 750 pixels wide by 121

pixels high or 375 pixels wide by 242 pixels high depending on whether the
horizontal binning is 1 or 2 and greater respectively.

• As a suggestion always use the set_head_offset command prior to the
take_image command in case the CPU has been powered down.

• For a low noise readout set the enable_dcs parameter TRUE and the dc_restore
parameter FALSE. For a rapid readout set the enable_dcs parameter FALSE and
the dc_restore parameter TRUE.

• When either the enable_dcs or dc_restore parameters are TRUE the readout
software adds a bias of 100 A/D counts to the video level.

end_exposure - Command 02H
Purpose: Transfers and reads out CCD.
Parameters:

abort (boolean)-Skip transfer and readout of CCD if TRUE
Response: ACK
Status Values:

0=Idle, 6=Transferring CCD, 7=Waiting for readout, 8=Reading CCD,
9=Post processing, 100-341=Digitizing line n where n=status-100

Notes:
• Aborts exposure in progress if not waiting for end_exposure command.
• Use this command after issuing a take_image command with the exposure_time

set to zero.

Page 7

Universal CPU Command Structure

shutter_control - Command 04H
Purpose: Open or close the shutter on an ST-6.
Parameters:

close (boolean)-Close (activate) shutter if TRUE, open if FALSE
Response:ACK
Status Values:

0=Idle, Shutter open, 1=Shutter closed
Notes:

• Physical activation of the shutter only occurs if an exposure is not in progress
when this command is received.

• While the ST-6 is the only camera that has a shutter, sending this command to
an ST-4X or an ST-5 will not generate an error. The camera will simply ignore the
command and return an ACK.

set_head_offset - Command 0FH
Purpose: Set the electrical offset in the optical head of the ST-6.
Parameters:

offset (int)-Setting of offset DAC in head, allowed values are 0-255
Response:ACK
Status Values:

0=Idle, 2=In progress
Notes:

• Physical activation of the head offset only occurs if an exposure is not in progress
and the flush_ccd command is idle when this command is received.

• Use the read_blank_video command to determine the proper setting for the offset
parameter.

• As a suggestion always use the set_head_offset command prior to the
take_image command in case the CPU has been powered down.

• While the ST-6 is the only camera that requires setting the head offset, sending
this command to an ST-4X or an ST-5 will not generate an error. The camera will
simply ignore the command and return an ACK.

Page 8

Universal CPU Command Structure

read_blank_video - Command 12H
Purpose: Read the output level of the CCD at the black level as digitized by the A/D.
Parameters:

enable_dcs (boolean)-For ST-6 cameras enables DCS when TRUE. Other cameras
ignore the setting of this parameter.

head_offset (int)-For ST-6 cameras this is the setting of the offset DAC in the head
with allowed values of 0-255. Other cameras ignore the setting of this parameter.

Response: (immediate packet)
video (int)-CCD black level A/D value

Status Values:
0=Idle, 2=In progress

Notes:
• Physical activation of this command only occurs if an exposure is not in progress

and the flush_ccd command is idle when this command is received.

ST-6 Cameras Only
• This command can be used to determine the correct setting for the head offset by

repetitively executing this command until the returned video is as small as
possible but still above a few hundred counts.

• Increasing the head_offset value will increase the video level by approximately
7000 counts.

flush_ccd - Command 27H
Purpose: Provide the capability of additional external flush or clear the CCD through

vertical transfers.
Parameters:

times (int)-Number of flush cycles to perform
Response:ACK
Status Values:

0=Idle, 2=In progress
Notes:

• Physical activation this command only occurs if an exposure is not in progress
when this command is received.

• It is not necessary to issue a flush_ccd command prior to using the take_image
command. The take_image command flushes the CCD four times at the start of
the integration.

ST-6 Cameras Only
• This command is only available in ST-6 version 3.0 and later ROMS.

Image Processing Commands
The commands described in this section are image processing commands, clearing image
buffers, co-adding buffers, etc.

Page 9

Universal CPU Command Structure

clr_buf - Command 06H
Purpose: Clears one of the image buffers by filling it with zeros.
Parameters:

buf (buffer)-Destination buffer to clear
Response:ACK
Status Values:

0=Idle, 1=Sent to foreground, 2=In progress
Notes:

• You do not need to call this function prior to using the take_image command
since the buffers are overwritten by that command.

get_line - Command 07H
Purpose: Transmit a compressed line of image data
Parameters:
 buf (buffer)-Source image buffer from which data will be transmitted
 line_start (int)-line to transmit (value depends on the size of the image buffers, 0 thru

max height - 1)
 pixel_start (int)-leftmost pixel to transmit (value depends on the size of the image

buffers, 0 thru max width - 1)
 pixel_len (int)-number of pixels to transmit (value depends on the size of the image

buffers, 1 thru max width)
Response:(immediate packet)

line_start (int)-line being sent
compressed_data_1 (byte) - 1st byte of compressed image data
.
.
compressed_data_N (byte) - last byte of compressed image data

Status Values:
0=Idle, 2=In progress

Notes:
• The compression algorithm used is described at the end of this document.
• Using compression you can effectively double the image download throughput.
• Use the get_cpu_info command to determine the maximum size of the image

buffers.

ST-6 Cameras Only
• The get_line command treats the image buffers as 375 pixels wide by 242 pixels

high. If the take_image command has been issued with a 750 pixel wide readout
mode then you will have to make 2 calls to this command to get the data. The 1st
line received will be the left half of the digitized image and the 2nd line received
will be the right half of the digitized image.

Page 10

Universal CPU Command Structure

get_uncompressed_line - Command 1FH
Purpose: Transmit an uncompressed line of image data.
Parameters:
 buf (buffer)-Source image buffer from which data will be transmitted
 line_start (int)-line to transmit (value depends on the size of the image buffers, 0 thru

max height - 1)
 pixel_start (int)-leftmost pixel to transmit (value depends on the size of the image

buffers, 0 thru max width - 1)
 pixel_len (int)-number of pixels to transmit (value depends on the size of the image

buffers, 1 thru max width)
Response: (immediate packet)

line_start (int)-line being sent
data_1 (int)-1st pixel
.
.
data_N (int)-last pixel

Status Values:
0=Idle, 2=In progress

Notes:
• Use the get_cpu_info command to determine the maximum size of the image

buffers.

ST-6 Cameras Only
• The get_uncompressed_line command treats the image buffers as 375 pixels wide

by 242 pixels high. If the take_image command has been issued with a 750 pixel
wide readout mode then you will have to make 2 calls to this command to get the
data. The 1st line received will be the left half of the digitized image and the 2nd
line received will be the right half of the digitized image.

Page 11

Universal CPU Command Structure

put_line - Command 22H
Purpose: Send a compressed line of image data up to the CPU for storage in one of the

image buffers
Parameters:
 buf (buffer)-Destination image buffer where data will be placed
 line_start (int)-line being sent (value depends on the size of the image buffers, 0 thru

max height - 1)
 pixel_start (int)-leftmost pixel being sent (value depends on the size of the image

buffers, 0 thru max width - 1)
 pixel_len (int)-number of pixels being sent (value depends on the size of the image

buffers, 1 thru max width)
 compressed_data_1 (byte) - 1st byte of compressed image data
 .
 .
 compressed_data_N (byte) - last byte of compressed image data
Response:ACK
Status Values:

0=Idle, 2=In progress
Notes:

• The compression algorithm used is described at the end of this document.
• Using compression you can effectively double the image upload throughput.
• Use the get_cpu_info command to determine the maximum size of the image

buffers.

ST-6 Cameras Only
• This command is only available in ST-6 version 3.0 and later ROMS.
• The put_line command treats the image buffers as 375 pixels wide by 242 pixels

high. If you want to upload an image simulating a 750 pixel wide readout mode
then you will have to make 2 calls to this command to send the data. The 1st line
sent will be the left half of the image and the 2nd line sent will be the right half of
the image.

Page 12

Universal CPU Command Structure

put_uncompressed_line - Command 23H
Purpose: Send an uncompressed line of image data up to the CPU for storage in one of

the image buffers
Parameters:
 buf (buffer)-Destination image buffer where data will be placed
 line_start (int)-line being sent (value depends on the size of the image buffers, 0 thru

max height - 1)
 pixel_start (int)-leftmost pixel being sent (value depends on the size of the image

buffers, 0 thru max width - 1)
 pixel_len (int)-number of pixels being sent (value depends on the size of the image

buffers, 1 thru max width)
 data_1 (int) - 1st pixel
 .
 .
 data_N (int) - last pixel
Response:ACK
Status Values:

0=Idle, 2=In progress
Notes:

• Use the get_cpu_info command to determine the maximum size of the image
buffers.

ST-6 Cameras Only
• This command is only available in ST-6 version 3.0 and later ROMS.
• The put_uncompressed_line command treats the image buffers as 375 pixels wide

by 242 pixels high. If you want to upload an image simulating a 750 pixel wide
readout mode then you will have to make 2 calls to this command to send the
data. The 1st line sent will be the left half of the image and the 2nd line sent will
be the right half of the image.

get_readout_peak - Command 03H
Purpose: Get the peak pixel value and location found during the previous readout.
Response: (immediate packet)

peak_value (int)-Peak pixel value found during readout
peak_x (int)-Location of peak in x
peak_y (int)-Location of peak in y

Status Values:
0=Idle, 2=In progress

Notes:
• If this command is issued after the take_image command with the auto_dark

parameter TRUE it will report the peak value after the dark frame subtraction.

Page 13

Universal CPU Command Structure

cal_width - Command 1EH
Purpose: Calculates the peak and the average pixel value in the box, then calculates the

height and width at half the amplitude of the peak over the average for the
data contained within the box, placing the results into the global result buffer.

Parameters:
buf (buffer)-source buffer to use in calculating the width
x_offset (int)-leftmost pixel of box (value depends on the size of the image buffers, 0

thru max width -1)
y_offset (int)-top line of box (value depends on the size of the image buffers, 0 thru

max height - 1)
x_length (int)-width of box (value depends on the size of the image buffers, 1 thru

max width)
y_length (int)-height of box (value depends on the size of the image buffers, 1 thru

max height)
Response:ACK immediately plus buffered results
Results: (placed into global results buffer)

width (int)-full width at half amplitude of star in box
height (int)-full height at half amplitude of star in box

Status Values:
0=Idle, 1=Sent to foreground, 2=In progress

Notes:
• You must use the get_result_buf command once this command has finished

executing to get the results of this command.
• Use the get_cpu_info command to determine the maximum size of the image

buffers.

ST-6 Cameras Only
• This command assumes the image buffers are 375 pixels wide by 242 pixels high

and will produce meaningless results if applied after the take_image command
has been used to capture an image with the 750 pixel wide readout mode.

Page 14

Universal CPU Command Structure

cal_cent - Command 08H
Purpose: Calculates the centroid of a given box of pixels and places the result in the

global results buffer.
Parameters:

buf (buffer)-source buffer to use in calculating the centroid
x_offset (int)-leftmost pixel of box (value depends on the size of the image buffers, 0

thru max width -1)
y_offset (int)-top line of box (value depends on the size of the image buffers, 0 thru

max height -1)
x_length (int)-width of box (value depends on the size of the image buffers, 1 thru

max width)
y_length (int)-height of box (value depends on the size of the image buffers, 1 thru

max height)
Response:ACK immediately plus buffered results
Results: (placed into global results buffer)

cent_x (long)-x centroid of box multiplied by 65536
cent_y (long)-y centroid of box multiplied by 65536
sum (long)-sum of pixels over threshold

Status Values:
0=Idle, 1=Sent to foreground, 2=In progress

Notes:
• You must use the get_result_buf command once this command has finished

executing to get the results of this command.
• Use the get_cpu_info command to determine the maximum size of the image

buffers.
• This command calculates a threshold level at the average pixel value within the

box and uses that as a discrimination level in calculating the centroid.

ST-6 Cameras Only
• This command assumes the image buffers are 375 pixels wide by 242 pixels high

and will produce meaningless results if applied after the take_image command
has been used to capture an image with the 750 pixel wide readout mode.

• Version 1.0 ROMs calculate a threshold level at half the maximum pixel value
above the average pixel value within the box and uses that as a discrimination
level in calculating the centroid.

Page 15

Universal CPU Command Structure

reduce_image - Command 09H
Purpose: Reduce image by combining and averaging 4 x 4 pixels into 1 pixel
Parameters:
 buf (buffer)-source/destination buffer to reduce
Response:ACK
Status Values:

0=Idle, 1=Sent to foreground, 2=In progress
Notes:

• This command overwrites the data in the image buffer, placing the upper left
corner of the reduced image at pixel 0,0.

ST-6 Cameras Only
• This command assumes the image buffers are 375 pixels wide by 242 pixels high

and will produce meaningless results if applied after the take_image command
has been used to capture an image with the 750 pixel wide readout mode.

shrink_image - Command 24H
Purpose: Reduce image by combining and averaging 2 x 2 pixels into 1 pixel
Parameters:
 buf (buffer)-source/destination buffer to reduce
Response:ACK
Status Values:

0=Idle, 1=Sent to foreground, 2=In progress
Notes:

• This command overwrites the data in the image buffer, placing the upper left
corner of the shrunk image at pixel 0,0.

ST-6 Cameras Only
• This command is only available in ST-6 version 3.0 and later ROMS.
• This command assumes the image buffers are 375 pixels wide by 242 pixels high

and will produce meaningless results if applied after the take_image command
has been used to capture an image with the 750 pixel wide readout mode.

accum_image - Command 0AH
Purpose: Add the light buffer to the accumulation buffer with X and Y offsets.
Parameters:

x_offset (signed int)-x offset of light buffer relative to accumulation buffer. Positive
values shifts light buffer to right

y_offset (signed int)-y offset of light buffer relative to accumulation buffer. Positive
values shifts light buffer down

Response:ACK
Status Values:

0=Idle, 1=Sent to foreground, 2=In progress
Notes:

ST-6 Cameras Only
• This command assumes the image buffers are 375 pixels wide by 242 pixels high

and will produce meaningless results if applied after the take_image command
has been used to capture an image with the 750 pixel wide readout mode.

Page 16

Universal CPU Command Structure

sub_offset - Command 0BH
Purpose: Subtract a constant offset from an image buffer.
Parameters:

buf (buffer)-source/destination buffer to subtract constant from
count (signed long)-value to subtract from buffer

Response:ACK
Status Values:

0=Idle, 1=Sent to foreground, 2=In progress

get_minmax - Command 0CH
Purpose: Scan a box of pixels within an image buffer for the minimum and maximum

pixel values.
Parameters:

buf (buffer)-source buffer to scan
x_offset (int)-leftmost pixel of box (value depends on the size of the image buffers, 0

thru max width -1)
y_offset (int)-top line of box (value depends on the size of the image buffers, 0 thru

max height -1)
x_length (int)-width of box (value depends on the size of the image buffers, 1 thru

max width)
y_length (int)-height of box (value depends on the size of the image buffers, 1 thru

max height)
Response:ACK immediately plus buffered results
Results: (placed into global results buffer)

min_x (int)-x position of minimum
min_y (int)-y position of minimum
min_value (long)-minimum value
max_x (int)-x position of maximum
max_y (int)-y position of maximum
max_value (long)-maximum value

Status Values:
0=Idle, 1=Sent to foreground, 2=In progress

Notes:
• Use the get_cpu_info command to determine the maximum size of the image

buffers.

ST-6 Cameras Only
• This command assumes the image buffers are 375 pixels wide by 242 pixels high. If

applied after the take_image command has been used to capture an image with
the 750 pixel wide readout mode then you will have to use the whole buffer as the
source and translate the coordinates of the results to get the correct results.

Page 17

Universal CPU Command Structure

sub_dark - Command 1CH
Purpose: Subtract the dark buffer from the light buffer, saving the results in the light

buffer.
Response:ACK
Status Values:

0=Idle, 1=Sent to foreground, 2=In progress
Notes:

• This command adds a bias of 100 counts to the difference to aviod clipping pixels
below zero.

Relay Commands
The commands in this section are used to control the relays within the CPU.

activate_relay - Command 0DH
Purpose: Activate or deactivate one or more relays for a period of time.
Parameters:

t_xplus (int)-x plus activation duration in hundredths of a second
t_xminus (int)-x minus activation duration in hundredths of a second
t_yplus (int)-y plus activation duration in hundredths of a second
t_yminus (int)-y minus activation duration in hundredths of a second
t_alarm (int)-alarm activation duration in hundredths of a second

Response:ACK
Status Values:

0=All idle, 1-31=Set of bits for active relays: x plus=8, x minus=4, y plus=2, y
minus=1, alarm=16

Notes:
• This command can be used to cancel relay activations by setting the appropriate

parameters to 0.

Temperature Regulation Commands
The commands in this section are used to control the CPU temperature regulation, which
varies from camera model to camera model.

Page 18

Universal CPU Command Structure

regulate_temp - Command 0EH
Purpose: Enable or disable the CPU temperature regulation.
Parameters:

enable (boolean)-enable temperature regulation when TRUE
setpoint (int)-temperature or thermistor setpoint in A/D units
samp_rate (int)-temperature sampling rate in hundredths of a second
p_gain (int)-proportional gain term
i_gain (int)-integral gain term
reset_brownout (boolean)-reset brownout detector when TRUE

Response:ACK
Status Values:

0=Idle, temperature regulation off, 1=Enabled
Notes:

• Since ST-4X cameras do not have temperature regulation, the settings of all
parameters in this command except the reset_brownout parameter are ignored by
ST-4X cameras.

• On power up the ST-5 and ST-6 CPUs read the current CCD temperature and start
regulating the temperature at that setpoint. The ST-4X CPU ramps the TE cooler
drive to the maximum drive level.

ST-5 Cameras Only
• Good values for the samp_rate, i_gain and p_gain parameters are 10, 164, and

1000 respectively.
• To convert from temperatures in °C to setpoints/thermistor readings in A/D units

or vice versa use the following constants in the formulas at the end of this
command:

T0 = 25.0 R_RATIO = 9.1
R0 = 3.0 R_BRIDGE = 9.09
DT = 50.0 MAX_AD = 8192

ST-6 Cameras Only
• Good values for the samp_rate, i_gain and p_gain parameters are 10, 200, and

1000 respectively.
• A bug in the Version 1.0 ROM exists where after disabling the temperature

regulation you must wait until the CPU ramps the TE cooler drive down to zero
(which can be monitored with the get_temp_status command) before reenabling
the regulation.

• To convert from temperatures in °C to setpoints/thermistor readings in A/D units
or vice versa use the following constants in the formulas at the end of this
command:

T0 = 25.0 R_RATIO = 9.1
R0 = 3.0 R_BRIDGE = 27.0
DT = 50.0 MAX_AD = 65536

Calculation of Setpoint from Temperature T in °C

r = R0 × e
ln(R_RATIO)×(T0 −T)

DT

Page 19

Universal CPU Command Structure

setpoint =
MAX_ AD

R_ BRIDGE
r

+ 1.0

Calculation of Temperature T in °C from Setpoint

r =
R_ BRIDGE

MAX_ AD

setpoint
− 1.0

T = T0 − DT ×
ln

r

R0

ln(R_ RATIO)

output_temp - Command 10H
Purpose: Output TE cooler drive value.
Parameters:

value (int)-temperature drive output (0 - max TE Drive)
Response:ACK
Status Values:

0=Idle, 2=In progress
Notes:

• Use the get_cpu_info command to determine the maximum allowed setting for
the value parameter above. The CPUs will accept higher values but will clip the
output value to the maximum.

• This command is functional only if the temperature regulation is disabled.

read_thermistor - Command 1DH
Purpose: Reads the thermistor A/D value and returns the result.
Response: (immediate packet)

thermistor (int)-digitized thermistor reading
Status Values:

0=Idle, 2=In progress
Notes:

• Since the ST-4X does not have temperature regulation capability, this command
returns 0 for these cameras.

• See the Notes for the regulate_temp command for how to convert the thermistor
reading to °C.

Page 20

Universal CPU Command Structure

get_temp_status - Command 20H
Purpose: Gets the status of the temperature regulation.
Response: (immediate packet)

enabled (boolean)-temperature regulation enabled if TRUE
setpoint (int)-setpoint thermistor reading in A/D units
output (int)-TE cooler drive level (0-max TE Drive)
samp_rate (int)-temperature regulation sample rate in hundredths of a second
p_gain (int)-proportional gain term
i_gain (int)-integral gain term
brownout_detected (boolean)-TRUE if CPU detected a brownout and shut off the TE

cooler drive
Status Values:

0=Idle, 2=In progress
Notes:

• Since ST-4X cameras do not have temperature regulation, these cameras will
return with the enabled parameter set FALSE, and the setpoint, samp_rate,
p_gain, and i_gain parameters set to 0.

• The CPU monitors the input voltage level and if it drops (brownout conditions) it
will shut down the TE cooler and set the brownout_detected flag TRUE. If this
occurs you will have to reenable the temperature regulation.

Aux Port Commands
Commands in this section deal with the auxiliary RS232/RS422 communications port on
the CPU. The AUX port can be used to interface to other serial based instruments with the
CPU acting as a gateway.

Page 21

Universal CPU Command Structure

tx_to_aux - Command 11H
Purpose: Pass data to AUX port and relay the response.
Parameters:

data_1 (byte)-1st byte of data to transmit to AUX port
.
.
data_N (byte)-last byte of data to transmit to AUX port

Response:ACK
Status Values:

0=Idle, 1=Sent to foreground, 2=Sending, 3=Done sending, echoing
Notes:

• If data length is zero then the CPU shuts off transmission to the AUX port, and
stops echoing. This is used to disable the AUX port after it has been enabled.

• This command dumps the AUX port's input buffer prior to sending the data and
clears the error status bits.

• The AUX output buffer in the CPU is 1024 bytes long as well as the COM receive
and transmit buffers. While the CPU can communicate to the Host over the COM
port and to peripherals on the AUX port at different baud rates, the buffers will
ultimately set the amount of data that can be passed back and forth per
transaction.

• The tx_to_aux command violates the restriction that the CPU only transmits data
to the host in response to a command from the host in that after issuing the
tx_to_aux command the CPU continues to echo data received from the AUX port
directly back to the host until disable with a tx_to_aux command with no data.

set_aux_control - Command 13H
Purpose: Set the baud rate, etc. of the AUX port.
Parameters:

baud (long)-baud rate to set AUX port to
control (int)-bits for least significant 5 bits in 80186EB's S1CON register

b0=mode bit 0
b1=mode bit 1
b2=mode bit 2
b3=parity enable when 1
b4=even parity when 1

Response:ACK
Status Values:

0=Idle, 2=In progress
Notes:

• At power up the CPU configures the AUX port for 9600 baud, 8 data bits, no
parity, 1 stop bit. The 8 data bits and 1 stop bit represents mode 001 in bits b2-
b0 in the control parameter above.

Page 22

Universal CPU Command Structure

get_aux_status - Command 14H
Purpose: Reports status of errors on the AUX port.
Response: (immediate packet)

errs (int)-accumulated error bits from the AUX port
b2=overrun error when 1
b4=framing error when 1
b7=parity error when 1

Status Values:
0=Idle, 2=In progress

Notes:
• The error flags in the errs result are cleared by calling the tx_to_aux command.

pulse_out - Command 26H
Purpose: Sends pulses of a given width and period out the AUX port.
Parameters:

synchronous (boolean)-when this parameter is TRUE all interrupts in the CPU are
disabled while the pulses are being generated for maximum pulse width and period
integrity.

number_pulses (int)-number of pulses to generate, 0 cancels pulses in progress
pulse_width (int)-width of pulses in units of 0.435µs with a minimum of 43.5µs
pulse_period (int)-period of pulses in units of 0.435µs with a minimun of 108.75µs

Response:ACK
Status Values:

0=Idle, 2=In progress
 Notes:

• Activation of this command only occurs if the take_image, tx_to_aux and
loopback_aux_test commands are idle when this command is received.

• Receipt of a take_image, tx_to_aux or loopback_aux_test command cancels any
pulse_out command in progress.

• If precise pulse width and pulse period control is required you should set the
synchronous parameter TRUE but be aware that the CPU will not respond to any
commands for the duration of a synchronous pulse_out command.

ST-6 Cameras Only
• This command is only available in ST-6 version 3.0 and later ROMS.

General Purpose Commands
This section describes general purpose commands within the CPU.

Page 23

Universal CPU Command Structure

get_cpu_info - Command 25H
Purpose:Return the camera model and capabilities.
Response: (immediate packet)

version (int)-Version of the response to this command. This is set to 1 indicating the
following format for the subsequent returned parameters:

cpu (enum)-Indicates the CPU type, 0=ST-4X, 1=ST-5, 2=ST-6
firmware_version (int)-This is the firmware version, interpreted as a four digit BCD

number in the format XX.XX. For example a return result of 1234H would
indicate a firmware version of 12.34.

name (32 chars)-NULL terminated text string identifying the camera
has_shutter (boolean)-TRUE if the camera has an integral electromechanical shutter

and supports the open_shutter parameter in the take_image command and the
shutter_control command

needs_offset (boolean)-TRUE if the camera requires using the set_head_offset
command to initialize the optical head prior to issuing the take_image command

variable_dcs (boolean)-TRUE if the camera supports programmable double correlated
sampling for the take_image command. If FALSE, the camera always operates
with double correlated sampling.

variable_dcr (boolean)-TRUE if the camera supports programmable dc restore for the
take_image command. If FALSE the camera does not require dc restore since the
camera always uses double correlated sampling.

has_temp_control (boolean)-TRUE if the camera has temperature regulation and thus
requires the use of the regulate_temp command. If FALSE the temperature
control is open loop and is controlled with the output_temp command.

max_te_drive (int)-Indicates the maximum TE cooler drive value as used in the
output_temp and get_temp_status commands

image_width (int)-Indicates the width of the image buffers
image_height (int)-Indicates the height of the image buffers
readout_modes (int)-Indicates the number of readout modes supported by the

take_image command. For each of the supported modes, the following 6
parameters are given (up to a maximum of 20 readout modes):

mode (int)-Indicates the mode number you should supply to the take_image
command in its readout_mode parameter to select this mode.

width (int)-Indicates the maximum readout width in pixels for this mode
height (int)-Indicates the maximum readout height in pixels for this mode
gain (int)-A four digit BCD number indicating the number of electrons per A/D

unit, interpreted as XX.XX. For example a setting of 1096H indicates 10.96
electrons/count.

pixel_width (long)-An eight digit BCD number indicating the individual pixel
width in microns in the format XXXXXX.XX. For example a setting of
00001375H indicates a pixel width of 13.75 microns.

pixel_height (long)-An eight digit BCD number indicating the individual pixel
height in microns in the format XXXXXX.XX. For example a setting of
00001600H indicates a pixel height of 16.00 microns.

Status Values:
0=Idle, 2=In progress

Page 24

Universal CPU Command Structure

Notes:
• The packet length of this response will vary from camera model to camera model

as different models support different numbers of readout modes.

ST-6 Cameras Only
• This command is only available in ST-6 version 3.0 and latr ROMS.

get_activity_status - Command 05H
Purpose:Report activity status of any command to the Host.
Parameters:

command (int)-command to get status word for
Response: (immediate packet)

command (int)-command for which status is being reported
status (int)-status of above command

Status Values:
0=Idle, 2=In progress

Notes:
• Use this command to monitor the progress of any command that has been sent to

the foreground for processing.

get_result_buf - Command 15H
Purpose: Send the contents of the result buffer to the Host.
Response: (immediate packet)

command (int)-command for which results were posted to the result buffer
results_1 (byte)-1st byte of result buffer
.
.
result_N (byte)-last byte of the result buffer

Status Values:
0=Idle, 2=In progress

Notes:
• Each command that posts results to the result buffer will have a different result

length as described in those commands (for example the cal_cent command posts
3 longs or 12 bytes of data).

call_remote - Command 16H
Purpose: Call a remote function that had been previously uploaded to the CPU.
Parameters:

offset (int)-offset of remote function address
segment (int)-segment of remote function address

Response:ACK
Status Values:

0=Idle, 2=In progress

Page 25

Universal CPU Command Structure

write_block - Command 17H
Purpose: Write a block of data into memory.
Parameters:

offset (int)-offset of destination address
segment (int)-segment of destination address
data_1 (byte)-1st byte of data to write to memory
.
.
data_N (byte)-last byte of data to write to memory

Response:ACK
Status Values:

0=Idle, 2=In progress
Notes:

• Do not send more than 1000 bytes of data at one time to avoid overflowing the
COM receive buffer in the CPU which is 1024 bytes long.

read_block - Command 18H
Purpose: Read a block of data from memory.
Parameters:

offset (int)-offset of data address
segment (int)-segment of data address
length (int)-number of bytes to read

Response: (immediate packed)
data_1 (byte)-1st byte of data read from memory
.
.
data_N (byte)-last byte of data read from memory

Status Values:
0=Idle, 2=In progress

Notes:
• Do not request more than 1000 bytes of data at one time to avoid overflowing the

COM transmit buffer in the CPU which is 1024 bytes long.

Page 26

Universal CPU Command Structure

get_rom_version - Command 19H
Purpose: Report CPU internal firmware version.
Response:

firmware_version (int)-this is the firmware version
Status Values:

0=Idle, 2=In progress
Notes:

• Interpret the firmware version as a 4 digit BCD number with a two digit fraction
(for example version 257 decimal = 0201H would be version 2.01)

• You should check the ROM version prior to issuing commands that are not
supported by all ROMS. For example before you use the binning modes
(readout_mode parameter) of the take_image command other than 0 and 1 you
should check that the ROM supports those modes.

set_com_baud - Command 1AH
Purpose: Set the baud rate of the COM port for communications with the Host.
Parameters:

baud (long)-baud rate to set COM port to
Response:ACK
Status Values:

0=Idle, 2=In progress
 Notes:

• The CPU sends the ACK at the old baud rate then switches to the new rate. You
must then send and the CPU must receive a get_rom_version command within
1.0 second or the CPU will switch back down to 9600 baud.

reset - Command 1BH
Purpose: Perform a cold reset of the CPU.
Response:ACK
 Notes:

• The CPU will restart communicating at 9600 baud just as if freshly powered up.

Test Commands
The commands in this section are for testing the CPU.

loopback_aux_test - Command 21H
Purpose: Test the AUX port for loopback capability.
Parameters:

baud (long)-baud rate to use in testing AUX port
Response:

sent (int)-number of characters sent out AUX port
errors (int)-number of errors in receiving data at AUX port

Status Values:
0=Idle, 2=In progress

 Notes:
• For this test to pass the AUX port must be made to loop back upon itself with the

RX tied to the TX.

Page 27

Universal CPU Command Structure

7. Data Compression Algorithm
This section describes the data compression used by the CPU in response to the get_line
and put_line commands. The data compression technique is essentially delta compression
where each pixel is compared to the previous one sent and if within a small delta then the
delta is sent as a byte rather than two bytes. This is a simple compression technique that
can give at best 2:1 compression. The CPU's data compression algorithm is as follows:

1) The CPU transmits the first pixel uncompressed as a 16 bit unsigned integer, most
significant byte first. It then uses the pixel value as the Base in the following.

2) The CPU calculates Delta = Pixeln - Base.
3) If -64 <= Delta <= 63 then the CPU transmits a single byte with the most significant

bit (b7) clear and Delta in the least significant 7 bits. It then sets Base to the value
of Pixeln and goes to the next pixel and step 2).

4) If -8192 <= Delta <= 8191 (14 bits) then the CPU transmits two bytes. In the first
byte it sets the most significant bit (b7) and clears bit b6. In the remaining 6 bits it
places the most significant 6 bits of Delta. In the second byte it places the least
significant 8 bits of Delta. It then sets Base to the value of Pixeln and goes to the
next pixel and step 2).

5) Otherwise the CPU transmits two bytes. First it calculates Val = Pixeln/4. In the
first byte it sets the most significant two bits (b7 & b6), and in the least significant 6
bits it puts the most significant 6 bits of newly calculated Val. In the second byte it
places the least significant bits of the newly calculated Val. Finally, it sets Base to
Val*4 and goes to the next pixel and step 2).

The compressed data is buried within the packet response to the get_line command with
an A5 start of packet, the get_line command byte, a two byte data length, the compressed
data, and a two byte checksum.

8. The Image Buffers
The CPU contains 3 image buffers referred to as the dark buffer, the light buffer, and the
accumulation buffer. The dark buffer is used to hold images taken with the shutter closed
or the camera covered. The light buffer is used to hold images taken with the shutter open
or the camera exposed to light. For best noise performance you should take a dark
exposure then a light exposure and subtract the dark exposure from the light exposure to
remove the fixed pattern and dark current noise associated with the dark image. The
exposures should be taken at the same temperature and have identical exposure times.
Finally, the accumulation buffer can be used for coadding light images. While the dark and
light buffers hold 16 bit values read by the A/D converter, the accumulation buffer is 32
bits, allowing the accumulation of 65536 images without saturating.

The image buffers are tailored to the CCD in each model camera. The image buffers
are treated as arrays by the CPU firmware with the height and width of the image array set
by the height and width of the CCD in its highest resolution readout mode (smallest pixel
size, largest number of pixels). This information is returned by the get_cpu_info
command.

ST-6 Cameras Only

The image buffers are treated differently by the image capturing routines and the data
processing routines. The take_image command treats the image buffers as arrays with 750

Page 28

Universal CPU Command Structure

columns and 121 rows for the 750 pixel wide readout modes and treats the image buffers as
arrays with 375 columns and 242 rows for all other readout modes (375 pixels wide and 250
pixels wide). The image processing routines always treat the image buffers as arrays with
375 columns and 242 rows. This slightly complicates downloading images taken with the
750 pixel wide readout modes in that you have to download two 375 pixel lines to get a
single 750 pixel line. The first line downloaded is the left portion of the 750 pixel line and
the second line downloaded is the right portion.

9. Sample Instruction Sequences
This section describes common tasks for the CCD cameras and the required commands
software packages supporting these cameras will need to perform those tasks.

Establishing a Communications Link
The first task any software package that communicates with the SBIG CCD cameras will
need to do is establish a communications link with the CPU. This is a two step test:
Communicating with the CPU and then switch the CPU to the fastest possible baud rate.
Since the state of the CPU can be unknown, you may have to hunt around looking for the
camera at different baud rates. We suggest using the following sequence to find the CPU:

1. Send the CPU a get_rom_version command at 9600 baud or at the
previous baud rate you had used in communicating with the camera if you
had previously established a communications link. If you get a valid
response packet back, including a correct checksum, then you are done
with the first part of the task. Otherwise try set 2.

2. Delay for a second (to allow the CPU to sync up to the byte stream),
change your baud rate (the host computer) and then send the CPU a
get_rom_version command, looking for a valid response. The baud rates
you should try are 9600 (which the CPU powers up at) and any other baud
rate you may have changed the CPU to. Since the CPU will only change
baud rates at the request of the Host you only need to scan these baud
rates. If the CPU does not respond at any baud rate then you should warn
the user that the camera could not be found and as a last ditch effort you
might try resetting the CPU (this shouldn't be necessary).

The second part of establishing a communications link with the CPU involves changing the
CPU's baud rate to the highest speed that the Host and CPU can communicate at with good
results (no communications errors). We suggest using the following sequence to reprogram
the CPU's speed:

1. Using the baud rate that you were able to find the CPU with above, send
the CPU a set_com_baud command, trying to change the CPU's baud rate
to the fastest rate your software or the Host can support. The CPU will
send back the ACK to the set_com_baud command at the old baud rate
and then switch to the new rate.

2. Change the Host to the new baud rate and send the CPU a
get_rom_version command at the new baud rate. This must be done
within 1 second of step 1 above or the CPU will switch back down to 9600
baud.

3. As a final check that communications will operate reliably at the new,
higher baud rate, you may want to send the CPU several get_line

Page 29

Universal CPU Command Structure

commands and check for a valid response. The get_line command sends
packets with hundreds of bytes, and if the communications are marginal
you're probably going to see it. If the communications at the higher baud
rate are unreliable then you should lower the baud rate one notch.

Finally, you should send the CPU a get_cpu_info command to determine the type of
camera and the camera's capabilities to insure those items are compatible with your
software. If the model CPU is not the one you're expecting then don't continue sending
commands. Unfortunately the get_cpu_info command is not present in ST-6 cameras with
ROMs before version 3.0. If you get a CAN back from the camera in response to the
get_cpu_info command then it is safe to assume it is and ST-6.

Determining the Head Offset (ST-6 Cameras Only)
The ST-6 cameras have an electronic offset adjust that needs to be programmed before
taking images. ST-4X and ST-5 CPUs have an auto-offset feature and don't require this
procedure. The electronic offset adjust corrects for variations from CCD to CCD. Once a
particular ST-6's offset has been determined, it should not vary much over time or
temperature (if it changes at all it will only change one or two counts). You should
determine the offset and retain the required setting to speed up the procedure on future
occasions. We suggest you do the following sequence right after you have established a
link with the ST-6:

1. Send the ST-6 a read_blank_video command with the enable_dcs
parameter set TRUE and the head_offset parameter set to 175 or the
previous level you had determined was correct.

2. If the returned video parameter in the ST-6's response is between 1000 and
10,000 then you are through. If the video is below 1000 then increase the
head_offset parameter by one and reissue the read_blank_video command,
otherwise the video is above 10,000 and you should decrease the
head_offset parameter by one and reissue the read_blank_video command.

3. Use the value of the head_offset parameter that resulted in a video reading
between 1,000 and 10,000 with the set_head_offset command prior to
using the take_image command to take images. You should retain the
correct setting and use that as your starting point next time you need to
adjust the head offset.

You may actually want to average several readings from the read_blank_video command,
and should be aware that bright illumination can effect the results. While the ST-6 closes
its integral mechanical vane while executing the read_blank_video command, it won't hold
off direct illumination with a bright light.

Taking an Exposure
Taking an image with the CPU can involve several steps as outlined below:

1. If the CPU is an ST-6 then you should use the set_head_offset command
to initialize the electronic offset in the ST-6 head prior to each exposure.

2. Depending on the results of the get_cpu_info command you may want to
program the CPU for different readout modes which trade off image spatial
resolution with digitization and download time.

Page 30

Universal CPU Command Structure

3. Send the CPU a take_image command with the parameters set as required
based upon the readout mode, etc.

4. On a periodic basis (like three times a second) send the CPU a
get_activity_status status command for the take_image command to
determine when the CPU has finished acquiring the image. Don't
interrogate the CPU faster hat 3 times per second to allow the CPU to
dedicate the majority of its processing power to acquiring the image which
can get processing intensive during the readout phase.

Downloading an Image
Use the get_line or get_uncompressed_line commands to download each row of the image
once the take_image command has finished its processing. The reason the image is
downloaded a line at a time is in case an error occurs in receiving the data at the Host end,
the CPU needs only send the line over again, not the entire image.

Sending Data to an Instrument on the AUX Port
The CPU has an AUX serial port that can be configured by the Host to talk to other
instruments, with the CPU acting as a gateway. You can talk to other RS-232/RS-422
instruments on the AUX port with a sequence outlined below:

1. Send the CPU a set_aux_control command to initialize the AUX port's
baud rate to that required by the other instrument.

2. Send the CPU a tx_to_aux command with the data to send to the other
instrument buried in the tx_to_aux command. The ST-6 will send the
data out the AUX port, and echo any response from the instrument back
to the Host. Note that the echoed data will not be buried in a packet, but
will just be the raw data received by the CPU through its AUX port.

3, To send additional data to the instrument continue to issue tx_to_aux
commands to the CPU. When you're done talking to the other instrument
send the CPU a final tx_to_aux command with no data to get the CPU to
shut down the AUX port echoing.

Page 31

	1. What's New
	2. Introduction
	3. Packet Structure
	4. Serial Data Format
	5. Working with Different Camera Configurations
	6. Commands
	 Exposure Related Commands
	 take_image - Command 01H
	 end_exposure - Command 02H
	 shutter_control - Command 04H
	 set_head_offset - Command 0FH
	 read_blank_video - Command 12H
	 flush_ccd - Command 27H
	 Image Processing Commands
	 clr_buf - Command 06H
	 get_line - Command 07H
	 get_uncompressed_line - Command 1FH
	 put_line - Command 22H
	 put_uncompressed_line - Command 23H
	 get_readout_peak - Command 03H
	 cal_width - Command 1EH
	 cal_cent - Command 08H
	 reduce_image - Command 09H
	 shrink_image - Command 24H
	 accum_image - Command 0AH
	 sub_offset - Command 0BH
	 get_minmax - Command 0CH
	 sub_dark - Command 1CH
	 Relay Commands
	 activate_relay - Command 0DH
	 Temperature Regulation Commands
	 regulate_temp - Command 0EH
	 output_temp - Command 10H
	 read_thermistor - Command 1DH
	 get_temp_status - Command 20H
	 Aux Port Commands
	 tx_to_aux - Command 11H
	 set_aux_control - Command 13H
	 get_aux_status - Command 14H
	 pulse_out - Command 26H
	 General Purpose Commands
	 get_cpu_info - Command 25H
	 get_activity_status - Command 05H
	 get_result_buf - Command 15H
	 call_remote - Command 16H
	 write_block - Command 17H
	 read_block - Command 18H
	 get_rom_version - Command 19H
	 set_com_baud - Command 1AH
	 set_com_baud - Command 1AH
	 Test Commands
	 loopback_aux_test - Command 21H
	7. Data Compression Algorithm
	8. The Image Buffers
	9. Sample Instruction Sequences
	 Establishing a Communications Link
	 Determining the Head Offset (ST-6 Cameras Only)
	 Taking an Exposure
	 Downloading an Image

